VINETA II: a linear magnetic reconnection experiment.
نویسندگان
چکیده
A linear experiment dedicated to the study of driven magnetic reconnection is presented. The new device (VINETA II) is suitable for investigating both collisional and near collisionless reconnection. Reconnection is achieved by externally driving magnetic field lines towards an X-point, inducing a current in the background plasma which consequently modifies the magnetic field topology. Owing to the open field line configuration of the experiment, the current is limited by the axial sheath boundary conditions. A plasma gun is used as an additional electron source in order to counterbalance the charge separation effects and supply the required current. Two drive methods are used in the device. First, an oscillating current through two parallel conductors drive the reconnection. Second, a stationary X-point topology is formed by the parallel conductors, and the drive is achieved by an oscillating current through a third conductor. In the first setup, the magnetic field of the axial plasma current dominates the field topology near the X-point throughout most of the drive. The second setup allows for the amplitude of the plasma current as well as the motion of the flux to be set independently of the X-point topology of the parallel conductors.
منابع مشابه
Experimental observation of correlated magnetic reconnection and Alfvénic ion jets
Correlations between magnetic reconnection and energetic ion flow events have been measured with merging force free spheromaks at the Swarthmore Spheromak Experiment. The reconnection layer is measured with a linear probe array and ion flow is directly measured with a retarding grid energy analyzer. Flow has been measured both in the plane of the reconnection layer and out of the plane. The mos...
متن کاملGeneration of Alfvén Waves by Small-Scale Magnetic Reconnection in Solar Spicules
Alfvén waves dissipation is an extensively studied mechanism for the coronal heating problem. These waves can be generated by magnetic reconnection and propagated along the reconnected field lines. Here, we study the generation of Alfvén waves at the presence of both steady flow and sheared magnetic field in the longitudinally density stratified of solar spicules. The initial flow is assumed to...
متن کاملUnsteady reconnection in MHD models
Submitted for the DPP09 Meeting of The American Physical Society Unsteady reconnection in MHD models GIOVANNI LAPENTA, KU Leuven — Within a MHD approach we find magnetic reconnection to progress in two entirely different ways. The first is well known: the laminar Sweet-Parker process. But a second, completely different and chaotic reconnection process is possible [1]. This regime has properties...
متن کاملExperimental Study of Current-Driven Turbulence During Magnetic Reconnection
Magnetic reconnection is an important process in magnetized plasmas ranging from the laboratory to astrophysical scales. It enables the release of magnetic energy believed to power solar flares and magnetospheric substorms. Reconnection also controls the evolution of the topology of the magnetic field, enabling deleterious instabilities, such as the sawtooth instability in fusion experiments, t...
متن کاملبررسی شتابدهی ذرات باردار از طریق بازاتصالی مغناطیسی در محیطهای پلاسمایی
Magnetic reconnection, which occurs in high conducting plasmas, changes the topology of magnetic field lines and converts magnetic energy into the kinetic and thermal energy of plasma and also accelerates charged particles. This phenomenon plays an important role in changing the dynamic of laboratory and space plasmas such as fusion tokamaks and sun’s corona. The electric and magnetic fields ge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Review of scientific instruments
دوره 85 2 شماره
صفحات -
تاریخ انتشار 2014